메뉴 바로가기 검색 및 카테고리 바로가기 본문 바로가기

인사이드 머신러닝 인터뷰

빅테크에서 자주 묻는 194가지 문제로 ML 면접 완벽 대비하기

한빛미디어

번역서

판매중

  • 저자 : 펑 샤오
  • 번역 : 정원창
  • 출간 : 2024-03-15
  • 페이지 : 332 쪽
  • ISBN : 9791169212120
  • eISBN : 9791169217934
  • 물류코드 :11212
  • 초급 초중급 중급 중고급 고급
1 2 3 4 5
4.9점 (27명)
좋아요 : 19

책소개

ML 면접을 위한 기본기부터 실무를 위한 실용적인 접근법까지

 

ML 면접에서 어떤 질문에도 자신 있게 대처하려면 전체 ML 워크플로와 관련 핵심 개념을 명확히 정리해야 한다. 이 책은 ML 기본 지식과 코딩 면접부터 시스템 및 인프라 설계 면접까지 단계별로 따라가며 지원자가 꼭 준비해야 할 문제와 해결 전략을 살펴본다. 저자는 아마존과 트위터, AI 스타트업을 거치며 천 명에 가까운 지원자를 면접한 경험을 바탕으로 빅테크 ML 면접에서 자주 묻는 질문 194가지와 최선의 답변을 구성하는 노하우를 풀어낸다. 책에서 제시하는 키워드 중심의 명쾌한 답변과 면접 관련 팁을 활용해 자신 있는 부분은 보강하고 부족한 부분은 충실히 보완해 면접을 성공으로 이끌어보자.

 

저자소개

펑 샤오 저자

펑 샤오

15년 동안 소셜 미디어, 광고 기술, 핀테크, 전자 상거래 등 다양한 분야에서 ML 리더십 직책을 맡아 천 명에 가까운 지원자를 면접했다. 트위터(현재 X)에서 스태프 ML 엔지니어로 근무하면서 추천 알고리즘과 광고 예측 및 랭킹을 위한 ML 시스템을 설계했으며 그 전에는 록시(Roxy)라는 AI 스타트업을 공동 창업해 벤처 캐피탈에서 수백만 달러의 투자를 받았다. 경력 초기에 아마존과 팩트셋(FactSet)에서 ML 팀을 이끌며 기계 번역, 표 형식 정보 추출, 개체명 인식, 토픽 모델링 등 다양한 ML 시스템의 개발을 감독했다.

정원창 역자

정원창

전자공학과 전산학을 공부하고 국내외의 크고 작은 하드웨어와 소프트웨어 회사에서 경험을 쌓았다. 현재는 자연어 처리에 중점을 둔 머신러닝 엔지니어로 일하고 있다. 옮긴 책으로 『인사이드 머신러닝 인터뷰』, 『개발자의 하루를 바꾸는 코파일럿 & 챗GPT』(이상 한빛미디어) 등이 있다.

 

목차

1장 ML 면접에 임하기
테크니컬 폰 스크린
ML 기본 지식 면접
ML 코딩 면접
ML 시스템 설계 면접
기타 면접
우수한 답변의 필수 요소

 

2장 ML 기본 지식
Q2.1 데이터셋 수집 단계
Q2.2 데이터 수집 시 문제
Q2.3 데이터 수집 시 고려 사항
Q2.4 레이블 불균형 처리
Q2.5 누락된 레이블 처리
Q2.6 입력 피처 유형
Q2.7 피처 선택과 중요도
Q2.8 피처 선택 방법
Q2.9 누락된 피처값
Q2.10 모델링 알고리즘
Q2.11 로지스틱 회귀 작동 방식
Q2.12 로지스틱 회귀 손실 함수
Q2.13 경사하강법 최적화
Q2.14 하이퍼파라미터 튜닝
Q2.15 모델 과적합 처리
Q2.16 정규화 기법
Q2.17 선형 회귀와 로지스틱 회귀
Q2.18 신경망 활성화 함수
Q2.19 의사 결정 트리, 랜덤 포레스트, 그래디언트 부스팅 결정 트리
Q2.20 부스팅과 배깅
Q2.21 비지도 학습 기법
Q2.22 k-평균 작동 방식
Q2.23 준지도 학습 기법
Q2.24 손실 함수 유형
Q2.25 손실 함수 볼록성
Q2.26 분류 모델 평가 지표
Q2.27 회귀 모델 평가 지표
Q2.28 모델 최적화
Q2.29 모델 성능 개선

 

3장 ML 코딩
Q3.1 k-평균
Q3.2 k-최근접 이웃
Q3.3 의사 결정 트리
Q3.4 선형 회귀
Q3.5 평가 지표
Q3.6 저수지 샘플링
Q3.7 확률 문제
Q3.8 해시 테이블과 분산 프로그래밍 문제
Q3.9 그래프 문제
Q3.10 문자열 문제
Q3.11 배열 문제

 

4장 ML 시스템 설계 1 - 추천 시스템
Q4.1 시스템 목적
Q4.2 시스템 지표
Q4.3 추천 콘텐츠 유형
Q4.4 추천 콘텐츠 혼합
Q4.5 시스템 운영 매개변수
Q4.6 시스템 구성 요소
Q4.7 콜드 스타트 문제
Q4.8 데이터셋 유형
Q4.9 데이터셋 수집 기법
Q4.10 데이터셋 편향
Q4.11 서빙 편향 완화
Q4.12 위치 편향 완화
Q4.13 추천 후보 출처
Q4.14 추천 후보 생성 단계
Q4.15 추천 후보 생성 알고리즘
Q4.16 임베딩 기술
Q4.17 대규모 추천 시스템의 후보 스코어링
Q4.18 신규 콘텐츠 색인화
Q4.19 추천 후보 병합 및 정리
Q4.20 사전 랭킹 모델 학습
Q4.21 사전 랭킹 모델 평가 지표
Q4.22 사전 랭킹 모델 알고리즘
Q4.23 사전 랭킹 모델 최적화
Q4.24 랭킹 모델 주요 피처
Q4.25 텍스트 또는 ID 기반 피처
Q4.26 횟수 기반 피처
Q4.27 헤비 랭킹 모델 학습
Q4.28 헤비 랭킹 모델 알고리즘
Q4.29 랭킹 모델 아키텍처
Q4.30 랭킹 모델 예측값 보정
Q4.31 랭킹 모델 평가 지표
Q4.32 다중 작업 모델과 개별 모델
Q4.33 모델 서빙 시스템
Q4.34 캐싱
Q4.35 모델 업데이트
Q4.36 온라인 실험
Q4.37 모델 로드
Q4.38 모델 실험 고려 사항
Q4.39 오프라인 평가 지표
Q4.40 온라인 성능 저하

 

5장 ML 시스템 설계 2 - 응용
Q5.1 문서 파싱
Q5.2 감성 분석
Q5.3 토픽 모델링 기법
Q5.4 문서 요약
Q5.5 자연어 이해
Q5.6 지도 학습 레이블
Q5.7 비지도 학습 피처
Q5.8 판별적 문제 피처
Q5.9 생성 모델 피처
Q5.10 정보 추출 모델 구축
Q5.11 정보 추출 평가 지표
Q5.12 분류 모델 구축
Q5.13 회귀 모델 구축
Q5.14 토픽 할당
Q5.15 토픽 모델링 평가 지표
Q5.16 문서 클러스터링 모델 구축
Q5.17 클러스터링 평가 지표
Q5.18 텍스트 생성 모델 구축
Q5.19 텍스트 생성 평가 지표
Q5.20 모델링 워크플로
Q5.21 오프라인 예측

 

6장 ML 인프라 설계
Q6.1 모델 개발 가속화
Q6.2 모델 학습 가속화
Q6.3 모델 학습 분산
Q6.4 모델 학습 파이프라인 평가
Q6.5 분산 학습 오류
Q6.6 모델 업데이트
Q6.7 모델 최적화
Q6.8 서빙 시스템 구성 요소
Q6.9 서빙 시 문제
Q6.10 피처 수화 개선
Q6.11 지연 시간 개선
Q6.12 많은 요청 처리하기
Q6.13 서빙 시 모델 업데이트
Q6.14 모델 배포와 롤백
Q6.15 서버 모니터링
Q6.16 서빙 시 성능 저하

 

7장 고급 ML 문제
Q7.1 지연된 레이블
Q7.2 레이블 없이 학습하기
Q7.3 가격 모델

 

부록 A 생성 모델: 노이지 채널 모델에서 LLM까지
A.1 기계 번역(MT)
A.2 자동 음성 인식(ASR)
A.3 트랜스포머로의 수렴
A.4 현실의 과제를 위한 미세 조정

 

참고자료
찾아보기

출판사리뷰

* 아마존과 트위터, AI 스타트업을 거친 베테랑 면접관이자

* ML 엔지니어가 제시하는 성공적인 ML 면접을 위한 노하우
 

ML 면접을 앞둔 지원자라면 어떤 역량을 개발해야 할지, 어떤 주제를 중점으로 학습해야 할지, 답변할 때 무엇을 고려해야 할지 등 고민이 많을 겁니다. 이 책은 ML 분야 취업에 필요한 역량 정리부터 실무 중심의 탄탄한 문제 해결 전략, 최신 기술을 반영한 부록과 참고자료까지 제공합니다.

 

첫째, ML 분야 취업에 꼭 필요한 실무 워크플로 핵심 지식
FAANG을 비롯한 빅테크 기업의 ML 면접에서 자주 묻는 질문 194가지를 담았습니다. 간결한 질문과 키워드 중심의 명쾌한 답변으로 구성되어 있어 면접에 앞서 내용을 정리하는 데 유용합니다. 이해를 돕기 위해 어려운 개념이나 모호한 표현에는 풍부한 역자주를 더했습니다.

 

둘째, 기본부터 심화 문제까지 대비하기 위한 단계별 지침
다섯 가지 면접 세션(ML 기본 지식 - ML 코딩 - ML 시스템 설계 - ML 인프라 설계 - 고급 ML 문제)으로 구성되어 있어 각자 지원하는 포지션과 난이도, 필요에 따라 내용을 찾아 보기 쉽습니다.

 

셋째, 핵심 키워드 중심으로 강력한 답변을 구성하는 전략
질문에 관한 핵심 키워드를 뽑아내고, 여러 가지 접근 방식을 비교하고, 장단점과 트레이드오프를 논하는 등 ML 면접에서 높은 점수를 얻기 위한 답변 구성 전략을 소개합니다.

 

넷째, 실제 시나리오 기반의 실무 중심 문제 해결 방식
ML 수명 주기 전반에 걸친 실용적인 개념과 시나리오를 다루므로 면접을 준비하는 구직자뿐 아니라 숙련된 실무자가 기본기를 확실히 다지는 데 도움이 됩니다.

 

이 책이 필요한 독자

  • ML 관련 직군을 희망하는 취업 준비생
  • ML 분야에서 경쟁력을 높이고 싶은 실무자
     

독자리뷰

오탈자 보기

결제하기
• 문화비 소득공제 가능
• 배송료 : 2,000원배송료란?

배송료 안내

  • 20,000원 이상 구매시 도서 배송 무료
  • 브론즈, 실버, 골드회원 무료배송
닫기

리뷰쓰기

닫기
* 상품명 :
인사이드 머신러닝 인터뷰
* 제목 :
* 별점평가
1 2 3 4 5
* 내용 :

* 리뷰 작성시 유의사항

글이나 이미지/사진 저작권 등 다른 사람의 권리를 침해하거나 명예를 훼손하는 게시물은 이용약관 및 관련법률에 의해 제재를 받을 수 있습니다.

1. 특히 뉴스/언론사 기사를 전문 또는 부분적으로 '허락없이' 갖고 와서는 안됩니다 (출처를 밝히는 경우에도 안됨).
2. 저작권자의 허락을 받지 않은 콘텐츠의 무단 사용은 저작권자의 권리를 침해하는 행위로, 이에 대한 법적 책임을 지게 될 수 있습니다.

오탈자 등록

닫기
* 도서명 :
인사이드 머신러닝 인터뷰
* 구분 :
* 상품 버전
종이책 PDF ePub
* 페이지 :
* 위치정보 :
* 내용 :

도서 인증

닫기
도서명*
인사이드 머신러닝 인터뷰
구입처*
구입일*
부가기호*
부가기호 안내

* 온라인 또는 오프라인 서점에서 구입한 도서를 인증하면 마일리지 500점을 드립니다.

* 도서인증은 일 3권, 월 10권, 년 50권으로 제한되며 절판도서, eBook 등 일부 도서는 인증이 제한됩니다.

* 구입하지 않고, 허위로 도서 인증을 한 것으로 판단되면 웹사이트 이용이 제한될 수 있습니다.

닫기

해당 상품을 장바구니에 담았습니다.이미 장바구니에 추가된 상품입니다.
장바구니로 이동하시겠습니까?